Sink data from RisingWave to Apache Iceberg
This guide describes how to sink data from RisingWave to Apache Iceberg using the Iceberg sink connector in RisingWave. Apache Iceberg is a table format designed to support huge tables. For more information, see Apache Iceberg.
The Iceberg sink connector in RisingWave is currently in Beta. Please use with caution as stability issues may still occur. Its functionality may evolve based on feedback. Please report any issues encountered to our team.
Prerequisites
-
Ensure you already have an Iceberg table that you can sink data to. For additional guidance on creating a table and setting up Iceberg, refer to this quickstart guide on creating an Iceberg table.
-
Ensure you have an upstream materialized view or source that you can sink data from.
Syntax
CREATE SINK [ IF NOT EXISTS ] sink_name
[FROM sink_from | AS select_query]
WITH (
connector='iceberg',
connector_parameter = 'value', ...
);
Parameters
Parameter Names | Description |
---|---|
type | Required. Allowed values: appendonly and upsert . |
force_append_only | Optional. If true , forces the sink to be append-only , even if it cannot be. |
s3.endpoint | Optional. Endpoint of the S3.
|
s3.region | Optional. The region where the S3 bucket is hosted. Either s3.endpoint or s3.region must be specified. |
s3.access.key | Required. Access key of the S3 compatible object store. |
s3.secret.key | Required. Secret key of the S3 compatible object store. |
database.name | Required. The database of the target Iceberg table. |
table.name | Required. The name of the target Iceberg table. |
catalog.type | Optional. The catalog type used in this table. Currently, the supported values are storage and rest . If not specified, storage is used. For details, see Catalogs. |
warehouse.path | Conditional. The path of the Iceberg warehouse. Currently, only S3-compatible object storage systems, such as AWS S3 and MinIO, are supported. It's required if the catalog.type is storage . |
catalog.uri | Conditional. The URL of the catalog. It is required when catalog.type is rest . |
primary_key | The primary key for an upsert sink. It is only applicable to the upsert mode. |
Data type mapping
RisingWave converts risingwave data types from/to Iceberg according to the following data type mapping table:
RisingWave Type | Iceberg Type |
---|---|
boolean | boolean |
int | integer |
bigint | long |
real | float |
double | double |
varchar | string |
date | date |
timestamptz | timestamptz |
timestamp | timestamp |
Catalogs
Iceberg supports two types of catalogs:
- Storage catalog: The Storage catalog stores all metadata in the underlying file system, such as Hadoop or S3. Currently, we only support S3 as the underlying file system.
- REST catalog: RisingWave supports the REST catalog, which acts as a proxy to other catalogs like Hive, JDBC, and Nessie catalog. This is the recommended approach to use RisingWave with Iceberg tables.
Iceberg table format
Currently, RisingWave only supports Iceberg tables in format v2.
Examples
This section includes several examples that you can use if you want to quickly experiment with sinking data to Iceberg.
Create an Iceberg table (if you do not already have one)
For example, the following spark-sql
command creates an Iceberg table named table
under the database dev
in AWS S3. The table is in an S3 bucket named my-iceberg-bucket
in region ap-southeast-1
and under the path path/to/warehouse
. The table has the property format-version=2
, so it supports the upsert option. There should be a folder named s3://my-iceberg-bucket/path/to/warehouse/dev/table/metadata
.
Note that only S3-compatible object store is supported, such as AWS S3 or MinIO.
spark-sql --packages org.apache.iceberg:iceberg-spark-runtime-3.4_2.12:1.3.1,org.apache.hadoop:hadoop-aws:3.3.2\
--conf spark.sql.catalog.demo=org.apache.iceberg.spark.SparkCatalog \
--conf spark.sql.catalog.demo.type=hadoop \
--conf spark.sql.catalog.demo.warehouse=s3a://my-iceberg-bucket/path/to/warehouse \
--conf spark.sql.catalog.demo.hadoop.fs.s3a.endpoint=https://s3.ap-southeast-1.amazonaws.com \
--conf spark.sql.catalog.demo.hadoop.fs.s3a.path.style.access=true \
--conf spark.sql.catalog.demo.hadoop.fs.s3a.access.key=${ACCESS_KEY} \
--conf spark.sql.catalog.demo.hadoop.fs.s3a.secret.key=${SECRET_KEY} \
--conf spark.sql.defaultCatalog=demo \
--e "drop table if exists demo.dev.`table`;
CREATE TABLE demo.dev.`table`
(
seq_id bigint,
user_id bigint,
user_name string
) TBLPROPERTIES ('format-version'='2')";
Create an upstream materialized view or source
The following query creates an append-only source. For more details on creating a source, see CREATE SOURCE
.
CREATE SOURCE s1_source (
seq_id bigint,
user_id bigint,
user_name varchar)
WITH (
connector = 'datagen',
fields.seq_id.kind = 'sequence',
fields.seq_id.start = '1',
fields.seq_id.end = '10000000',
fields.user_id.kind = 'random',
fields.user_id.min = '1',
fields.user_id.max = '10000000',
fields.user_name.kind = 'random',
fields.user_name.length = '10',
datagen.rows.per.second = '20000'
) FORMAT PLAIN ENCODE JSON;
Another option is to create an upsert table, which supports in-place updates. For more details on creating a table, see CREATE TABLE
.
CREATE TABLE s1_table (
seq_id bigint,
user_id bigint,
user_name varchar)
WITH (
connector = 'datagen',
fields.seq_id.kind = 'sequence',
fields.seq_id.start = '1',
fields.seq_id.end = '10000000',
fields.user_id.kind = 'random',
fields.user_id.min = '1',
fields.user_id.max = '10000000',
fields.user_name.kind = 'random',
fields.user_name.length = '10',
datagen.rows.per.second = '20000'
) FORMAT PLAIN ENCODE JSON;
Append-only sink from append-only source
If you have an append-only source and want to create an append-only sink, set type = append-only
in the CREATE SINK
SQL query.
CREATE SINK s1_sink FROM s1_source
WITH (
connector = 'iceberg',
type = 'append-only',
warehouse.path = 's3a://my-iceberg-bucket/path/to/warehouse,
s3.endpoint = 'https://s3.ap-southeast-1.amazonaws.com',
s3.access.key = '${ACCESS_KEY}',
s3.secret.key = '${SECRET_KEY},
database.name='dev',
table.name='table'
);
Append-only sink from upsert source
If you have an upsert source and want to create an append-only sink, set type = append-only
and force_append_only = true
. This will ignore delete messages in the upstream, and to turn upstream update messages into insert messages.
CREATE SINK s1_sink FROM s1_table
WITH (
connector = 'iceberg',
type = 'append-only',
force_append_only = 'true',
warehouse.path = 's3a://my-iceberg-bucket/path/to/warehouse,
s3.endpoint = 'https://s3.ap-southeast-1.amazonaws.com',
s3.access.key = '${ACCESS_KEY}',
s3.secret.key = '${SECRET_KEY},
database.name='dev',
table.name='table'
);
Upsert sink from upsert source
In RisingWave, you can directly sink data as upserts into Iceberg tables.
CREATE SINK s1_sink FROM s1_table
WITH (
connector = 'iceberg',
warehouse.path = 's3a://my-iceberg-bucket/path/to/warehouse,
s3.endpoint = 'https://s3.ap-southeast-1.amazonaws.com',
s3.access.key = '${ACCESS_KEY}',
s3.secret.key = '${SECRET_KEY},
database.name='dev',
table.name='table',
primary_key='seq_id'
);